

Published on Web 01/12/2010

Rhodium-Catalyzed Asymmetric Reductive Cyclization of Heteroatom-Linked 5-Alkynals with Heteroatom-Substituted Acetaldehydes

Rie Tanaka,[†] Keiichi Noguchi,[‡] and Ken Tanaka^{*,†}

Department of Applied Chemistry, Graduate School of Engineering, and Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan

Received December 11, 2009; E-mail: tanaka-k@cc.tuat.ac.jp

Transition-metal-catalyzed cyclizations of alkynals have been extensively studied for the stereoselective synthesis of cyclic allylic alcohols.¹ A number of efficient reductive cyclizations of alkynals leading to cyclic allylic alcohols with a trisubstituted alkene component have been reported that use nickel,² rhodium,³ ruthenium,⁴ or titanium⁵ complexes as catalysts and organozincs,^{2a} organosilanes,^{2b-e,3a,b,5} hydrogen,^{3c,d} or alcohols⁴ as reducing agents (Scheme 1). Also, efficient alkylative or arylative cyclizations of alkynals leading to cyclic allylic alcohols with a tetrasubstituted alkene component have been reported that use nickel,⁶ rhodium, palladium,⁸ iron,⁹ or manganese¹⁰ complexes as catalysts and organozincs,^{6a} organozirconiums,^{6b} organoborons,^{6c,d} organoboronics,^{7,8} organolithiums,⁹ or organomagnesiums¹⁰ as alkylating or arylating agents (Scheme 1). In this communication, we disclose an unprecedented mode of cyclization of alkynals that leads to cyclic allylic esters with a trisubstituted alkene component, namely, asymmetric reductive cyclization of heteroatom-linked 5-alkynals with heteroatom-substituted acetaldehydes using a cationic rho- $\operatorname{dium}(I)/(R)$ -H₈-BINAP complex as a catalyst (Scheme 1).

Scheme 1

Our research group previously reported that a cationic rhodium(I)/ *rac*-BINAP complex is able to catalyze the intramolecular hydroacylation of methylene-linked 5-alkynals 1 (Z = CH₂), leading to 2-alkylidenecyclopentanones 2 via acylrhodacycle A generated through aldehyde C–H bond activation followed by alkyne insertion (Scheme 2).¹¹ On the other hand, the rhodium-catalyzed reductive cyclization of heteroatom-linked 5-alkynals through oxarhodacyclopentenes had already been reported.³ We anticipated that oxarhodacyclopentene **B** generated from heteroatom-linked 5-alkynals 1 (Z = NTs or O) and rhodium would react with the alkyne¹² or aldehyde component of 1 in the absence of reducing agents (Scheme 2).

Thus, the reaction of tosylamide-linked 5-alkynal 1a in the presence of the cationic rhodium(I)/*rac*-BINAP complex (10 mol %) at room temperature was examined. We were pleased to find that an unprecedented reductive cyclization with aldehyde proceeded to yield cyclic allylic ester 3a in 73% yield (eq 1):

The effect of the bisphosphine ligand in the reaction of **1a** was then examined (Table 1). The study revealed that biaryl bisphosphine ligands are effective for the reductive cyclization (entries 3–5), while nonbiaryl bisphosphine ligands are totally ineffective (entries 1 and 2).¹³ (*R*)-H₈-BINAP was the best ligand, and the desired product **3a** was obtained in the highest yield with perfect enantioselectivity (entry 5).

Scheme 2

PPh ₂ PPh ₂		PPh ₂ PPh ₂	PPh ₂ PPh ₂	PPh ₂ PPh ₂
dppb	dppf	BIPHEP	(<i>R</i>)-BINAP	(R)-H ₈ -BINAP
entry	ligand	conv. ((%) yield (%) ^b	ee (%)
1	dppb	100	0 0	-
2	dppf	100	0	_
3	BIPHEP	88	33	—
4	(R)-BINAP	100) 72	98 (+)
5	(R)-H ₈ -BINAP	100) 78	>99 (+)

 $^a\,[Rh(ligand)]BF_4$ (0.010 mmol), 1a (0.10 mmol), and CH_2Cl_2 (1.0 mL) were used. b Isolated yield.

The series of 5-alkynals 1a-f were subjected to the above optimal reaction conditions (Table 2). Both alkyl- (1a-d), entries 1-4) and phenyl-substituted (1e, entry 5) tosylamide-linked 5-alkynals could participate in this reaction to yield the corresponding esters in high yields with outstanding ee values. Not only tosylamide-linked 5-alkynals but also ether-linked 5-alkynal 1f could participate in this reaction (entry 6).

We subsequently investigated rhodium-catalyzed enantioselective cross-reductive cyclizations of 5-alkynals 1a-f with heteroatom-substituted acetaldehydes 4a-c (Table 3).¹⁴ Commercially available benzyloxyacetaldehyde (4a) reacted with 5-alkynals 1a-f to yield the corresponding esters in good yields with excellent ee values (entries 1–6). Not only 4a but also phenoxyacetaldehyde (4b, entry

[†] Department of Applied Chemistry.

[‡] Instrumentation Analysis Center.

7) and a nitrogen-substituted acetaldehyde (4c, entry 8) could react with 1f to yield the corresponding esters with excellent ee values. The absolute configuration of (+)-5ca was determined to be S by the anomalous dispersion method.

Table 2. Rh-Catalyzed Enantioselective Homo-Reductive Cyclizations of 5-Alkynals 1a-fa

^{*a*} [Rh((*R*)-H₈-BINAP)]BF₄ (0.020 mmol), 1a-f (0.20 mmol), and CH₂Cl₂ (2.0 mL) were used. ^b Isolated yield. ^c Using 4.0 mL of CH₂Cl₂.

Table 3. Rh-Catalyzed Enantioselective Cross-Reductive Cyclizations of 5-Alkynals 1a-f with Aldehydes 4a-c^a

^a [Rh((R)-H₈-BINAP)]BF₄ (0.020 mmol), 1a-f (0.20 mmol), 4a-c (0.40 mmol), and CH2Cl2 (2.0 mL) were used. ^b Isolated yield. ^c At 40 °C.

Scheme 3 depicts a possible mechanism for the present reductive cyclization. We believe that heteroatom-linked 5-alkynal 1 reacts with the rhodium(I) catalyst, affording oxarhodacyclopentene C with chelating heteroatom-substituted acetaldehyde 4. σ -Bond methathesis^{2c,3c} of the aldehyde C-H bond and the Rh-O bond would afford intermediate D, which would undergo reductive elimination to afford ester 5.

Scheme 3

Consistent with the above pathway, the reaction of 1f with deuterium-labeled aldehyde 4a-d led to selective and quantitative incorporation of deuterium in the vinylic position of the product 5fa-d (eq 2). Furthermore, starting materials were recovered unchanged in the reaction of methylene-linked 5-alkynal 1g and benzyloxyacetaldehyde (4a) (eq 3), and ether-linked 5-alkynal 1f failed to react with 3-benzyloxypropionaldehyde (4d) but reacted with 1f to yield the homo-reductive cyclization product 3f (eq 4). Therefore, the rapid oxarhodacyclopentene formation and the five-membered chelation of the heteroatom-substituted acetaldehyde to the cationic rhodium are essential in promoting the present reductive cyclization.

In conclusion, we have established that a cationic rhodium(I)/ (R)-H₈-BINAP complex catalyzes the asymmetric reductive cyclization of heteroatom-linked 5-alkynals with heteroatom-substituted acetaldehydes. Future studies will focus on detailed mechanistic studies and expanding the reaction scope beyond heteroatomsubstituted acetaldehydes.

Acknowledgment. This work was partially supported by Grantsin-Aid for Scientific Research (19028015 and 20675002) from MEXT, Japan. We are grateful to Takasago International Corporation for the gift of H₈-BINAP and Umicore for generous support in supplying a rhodium complex.

Supporting Information Available: Experimental procedures, compound characterization data, and X-ray crystallographic data (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Selected reviews: (a) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. *Chem. Rev.* **1996**, *96*, 635. (b) Montgomery, J. *Acc. Chem. Res.* **2000**, *33*, 467. (c) Montgomery, J. *Angew. Chem., Int. Ed.* **2004**, *43*, 3890. (d) Jang, H.-Y.; Krische, M. J. Acc. Chem. Res. 2004, 37, 653. (e) Fujiwara, M.; Ojima, I. Modern Rhodium-Catalyzed Organic Reactions; Evans, P. A., Gjina, I. Mouern Robinar-Catalyzer Organic Reactions, Evans, I. X., Ed.; Wiley-VCH: Weinheim, Germany, 2005; p 129. (f) Miura, T.; Murakami, M. *Chem. Commun.* 2007, 217. (g) Moslin, R. M.; Miller-Moslin, K.; Jamison, T. F. *Chem. Commun.* 2007, 4441.
 (a) Oblinger, E.; Montgomery, J. J. Am. Chem. Soc. 1997, 119, 9065. (b) Tang, X.-Q.; Montgomery, J. J. Am. Chem. Soc. 1997, 121, 6098. (c) Tang, Y. S. 2000.
- X.-Q.; Montgomery, J. J. Am. Chem. Soc. 2000, 122, 6950. (d) Mahandru, G. M.; Liu, G.; Montgomery, J. J. Am. Chem. Soc. 2004, 126, 3698. (e) Knapp-Reed, B.; Mahandru, G. M.; Montgomery, J. J. Am. Chem. Soc. 2005, 127, 13156.
- (a) Ojima, I.; Tzamarioudaki, M.; Tsai, C.-Y. J. Am. Chem. Soc. 1994, 116, 3643. (b) Bennacer, B.; Fujiwara, M.; Lee, S.-Y.; Ojima, I. J. Am. Chem. Soc. 2005, 127, 17756. (c) Rhee, J. U.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 10674. (d) Rhee, J. U.; Jones, R. A.; Krische, M. J. Synthesis 2007, 3427.
- (4) Patman, R. L.; Chaulagain, M. R.; Williams, V. M.; Krische, M. J. J. Am. Chem. Soc. 2009, 131, 2066.
- (5) Crowe, W. E.; Rachita, M. J. J. Am. Chem. Soc. 1995, 117, 6787
- (6) (a) Oblinger, E.; Montgomery, J. J. Am. Chem. Soc. 1997, 119, 9065. (b)
 Ni, Y.; Amarasinghe, K. K. D.; Montgomery, J. Org. Lett. 2002, 4, 1743. (c) Patel, S. J.; Jamison, T. F. Angew. Chem., Int. Ed. 2003, 42, 1364. (d) Patel, S. J.; Jamison, T. F. Angew. Chem., Int. Ed. 2003, 42, 1364. (d) Patel, S. J.; Jamison, T. F. Angew. Chem., Int. Ed. 2004, 43, 3941.
 (a) Shintani, R.; Okamoto, K.; Otomaru, Y.; Ueyama, K.; Hayashi, T. J. Am. Chem. Soc. 2005, 127, 54. (b) Miura, T.; Shimada, M.; Murakami, M. Chem. Soc. 2005, 127, 54. (c) Miura, T.; Shimada, M.; Murakami, M.
- (7)Synlett **2005**, 667. (c) Matsuda, T.; Makino, M.; Murakami, M. Angew. Chem., Int. Ed. **2005**, 44, 4608. (d) Miura, T.; Shimada, M.; Murakami, M. Angew. Chem., Int. Ed. 2005, 44, 7598. (e) Miura, T.; Shimada, M.;
- Murakami, M. *Tetrahedron* 2007, 63, 6131.
 (8) Tsukamoto, H.; Ueno, T.; Kondo, Y. *J. Am. Chem. Soc.* 2006, *128*, 1406.
 (9) Hojo, M.; Murakami, Y.; Aihara, H.; Sakuragi, R.; Baba, Y.; Hosomi, A. *Angew. Chem., Int. Ed.* 2001, *40*, 621.
- (10) (a) Tang, J.; Okada, K.; Shinokubo, H.; Oshima, K. Tetrahedron 1997, 53, 5061. (b) Yorimitsu, H.; Tang, J.; Okada, K.; Shinokubo, H.; Oshima, K. Chem. Lett. 1998, 27, 11.
- (11) Takeishi, K.; Sugishima, K.; Sasaki, K.; Tanaka, K. Chem.-Eur. J. 2004, 10. 5681
- (12) Cobalt-mediated [2 + 2 + 2] cycloaddition of 5-hexynal with bis(trimethylsilyl)acetylene has been reported: Harvey, D. F.; Johnson, B. M.; Ung, C. S.; Vollhardt, K. P. C. Synlett 1989, 15.
- (13) Intramolecular hydroacylation products were generated in 20-50% yield, except for unidentified mixtures of byproducts in entries 1-3, although these hydroacylation products could not be isolated in pure forms
- (14) Homoreductive cyclization products 3 were generated in 5-30% yield, except for cross-reductive cyclization products 5.

JA9104655